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Orthogonal Complement

Definition

Let H be a Hilbert module over a C ∗-algebra A.

The algebraic tensor
product H ⊗ A∗∗ becomes a right A∗∗-module if we set
(h ⊗ a) · a1 = h ⊗ aa1 for all h ∈ H and a, a1 ∈ A∗∗. Define
〈−,−〉 : H ⊗ A∗∗ × H ⊗ A∗∗ → A∗∗ by

〈
∑
i

hi ⊗ ai ,
∑
j

xj ⊗ bj〉 =
∑
i ,j

a∗i 〈hi , xj〉bj .

Set N = {z ∈ H ⊗ A∗∗ : 〈z , z〉 = 0}. Then (H ⊗ A∗∗)/N becomes a
pre-Hilbert A∗∗-module containing H as an A-submodule. Denote by H∼

the Hilbert A∗∗-module ((H ⊗ A∗∗)/N)−)]. It is self-dual, i.e.,
(H∼)] = H∼. Moreover, B(H∼) = L(H∼) is an W ∗-algebra.
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If T ∈ B(H), then T extends uniquely to a module map T̃

on
(H ⊗ A∗∗)/N (with ‖T̃‖ = ‖T‖). Therefore, T̃ extends uniquely to a
module map in B(H∼). If T ∈ B(H,H]), for any h ∈ H, T (h) ∈ H]. But
H] is an A-submodule of H∼. Define

〈T (
∑
i

hi ⊗ ai ),
∑
j

xj ⊗ bj〉 =
∑
i ,j

a∗i [T (hi )(xj)]bj .

Then T becomes an element in B(((H ⊗ A∗∗)/N)−,H∼). So T then
extends to a map in B(H∼) with ‖T̃‖ = ‖T‖. Moreover such extension is
unique.
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Theorem 2.2 Let A be a C ∗-algebra, H be a Hilbert A-module and
T ∈ L(H).

If T has a closed range, then

H = kerT ⊕ |T |(H).

In particular, T has a polar decomposition T = V |T | in L(H).

Proof:
Let T = V |T | be the polar decomposition in B(H∼). Since T (H) is
closed and V is a partial isometry, |T |(H) is closed. Notice that
|T | ∈ L(H). Since |T |(H) is closed,

|T |(H) = |T |1/2(|T |1/2(H)) ⊂ |T |1/2(H).

So |T |1/2(H) = |T |(H). Set B = {S ∈ L(H) : S |T |(H) ⊂ |T |(H)}. So
|T |1/2 ∈ B. It is obvious that |T |1/2 is also one-to-one on |T |(H).
Therefore |T |1/2 is invertible in B. Hence either 0 6∈ sp(|T |1/2) or 0 is an
isolated point in sp(|T |1/2).
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Let p be the range projection of |T | in (L(H)∗∗. Then |T |1/n → p in
norm. It follows that p ∈ L(H). Clearly, p(H) = |T |(H) and
(1− p)(H) = kerT , whence V ∈ L(H).
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Corollary 2.3 Let H1 and H2 be Hilbert A-modules.

If there exists an
invertible map T ∈ L(H1,H2), then H1

∼= H2.

Corollary 2.4 Let H1 and H2 be Hilbert A-modules such that
L(H1) = B(H1). If there exists an invertible map T ∈ B(H1,H2), then
H1
∼= H2.

Proof.

Note that T ∗ ∈ B(H2,H
]
1). Therefore T ∗T ∈ B(H1,H

]
1). Since

L(H1) = B(H1), M(K (H1)) = LM(K (H1)). It follows a theorem of L. G.
Brown that QM(K (H1)) = M(K (H1)). Thus, by Theorem 1.14,

B(H1,H
]
1) = L(H1). So T ∗T ∈ L(H1). It follows that |T | ∈ L(H1) which

is invertible. By apply ing Lemma 2.2, U = T |T |−1 gives the desired
unitary.
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Definition2.4 Let H be a Hilbert module.

We say H is orthogonally
complementary if any Hilbert module H1 containing H has an orthogonal
decomposition:

H1 = H ⊕ H⊥.

Clearly, not all Hilbert modules are orthogonally complementary. It is
shown that if A is unital, then any orthogonal direct summand of An, the
direct sum of n copies of A, is orthogonally complementary.
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Theorem 2.5 Let E be a full Hilbert A-module such that L(E ) = B(E ).

Then E is orthogonal complementary.

Proof: Suppose that H is a Hilbert A-module and E ⊂ H. Let P be the
bounded module map from H into E ] defined by
Px(y) = 〈x , y〉 for all x ∈ H and y ∈ E . Fix x ∈ H and y ∈ E , define

T (z) = y(Px(z)) = y〈x , z〉 for all z ∈ E .

Working in B(E∼), if necessary, we see that

T ∗(z) = Px〈y , z〉 for all z ∈ E .

Since T ∈ B(E ) = L(E ), T ∗ ∈ L(E ). Therefore Px(
∑m

i=1〈yi ,wi 〉) ∈ E
for all yi ,wi ∈ E , 1 ≤ i ≤ m (for any m ∈ N). Let x = u〈x , x〉1/2 be the
polar decomposition of x in H∼. With ‖z‖ ≤ 1, we have

‖〈Px , z〉 − 〈Px(
m∑
i=1

〈yi ,wi 〉), z〉 ≤ ‖(l −
m∑
i=1

〈yi ,wi 〉)〈x , x〉1/2‖.

Huaxin Lin Department of Mathematics East China Normal University University of OregonIntroduction to Hilbert C∗-modules, II 8 / 1



Theorem 2.5 Let E be a full Hilbert A-module such that L(E ) = B(E ).
Then E is orthogonal complementary.

Proof: Suppose that H is a Hilbert A-module and E ⊂ H.

Let P be the
bounded module map from H into E ] defined by
Px(y) = 〈x , y〉 for all x ∈ H and y ∈ E . Fix x ∈ H and y ∈ E , define

T (z) = y(Px(z)) = y〈x , z〉 for all z ∈ E .

Working in B(E∼), if necessary, we see that

T ∗(z) = Px〈y , z〉 for all z ∈ E .

Since T ∈ B(E ) = L(E ), T ∗ ∈ L(E ). Therefore Px(
∑m

i=1〈yi ,wi 〉) ∈ E
for all yi ,wi ∈ E , 1 ≤ i ≤ m (for any m ∈ N). Let x = u〈x , x〉1/2 be the
polar decomposition of x in H∼. With ‖z‖ ≤ 1, we have

‖〈Px , z〉 − 〈Px(
m∑
i=1

〈yi ,wi 〉), z〉 ≤ ‖(l −
m∑
i=1

〈yi ,wi 〉)〈x , x〉1/2‖.

Huaxin Lin Department of Mathematics East China Normal University University of OregonIntroduction to Hilbert C∗-modules, II 8 / 1



Theorem 2.5 Let E be a full Hilbert A-module such that L(E ) = B(E ).
Then E is orthogonal complementary.

Proof: Suppose that H is a Hilbert A-module and E ⊂ H. Let P be the
bounded module map from H into E ] defined by
Px(y) = 〈x , y〉 for all x ∈ H and y ∈ E .

Fix x ∈ H and y ∈ E , define

T (z) = y(Px(z)) = y〈x , z〉 for all z ∈ E .

Working in B(E∼), if necessary, we see that

T ∗(z) = Px〈y , z〉 for all z ∈ E .

Since T ∈ B(E ) = L(E ), T ∗ ∈ L(E ). Therefore Px(
∑m

i=1〈yi ,wi 〉) ∈ E
for all yi ,wi ∈ E , 1 ≤ i ≤ m (for any m ∈ N). Let x = u〈x , x〉1/2 be the
polar decomposition of x in H∼. With ‖z‖ ≤ 1, we have

‖〈Px , z〉 − 〈Px(
m∑
i=1

〈yi ,wi 〉), z〉 ≤ ‖(l −
m∑
i=1

〈yi ,wi 〉)〈x , x〉1/2‖.

Huaxin Lin Department of Mathematics East China Normal University University of OregonIntroduction to Hilbert C∗-modules, II 8 / 1



Theorem 2.5 Let E be a full Hilbert A-module such that L(E ) = B(E ).
Then E is orthogonal complementary.

Proof: Suppose that H is a Hilbert A-module and E ⊂ H. Let P be the
bounded module map from H into E ] defined by
Px(y) = 〈x , y〉 for all x ∈ H and y ∈ E . Fix x ∈ H and y ∈ E , define

T (z) = y(Px(z)) = y〈x , z〉 for all z ∈ E .

Working in B(E∼), if necessary, we see that

T ∗(z) = Px〈y , z〉 for all z ∈ E .

Since T ∈ B(E ) = L(E ), T ∗ ∈ L(E ). Therefore Px(
∑m

i=1〈yi ,wi 〉) ∈ E
for all yi ,wi ∈ E , 1 ≤ i ≤ m (for any m ∈ N). Let x = u〈x , x〉1/2 be the
polar decomposition of x in H∼. With ‖z‖ ≤ 1, we have

‖〈Px , z〉 − 〈Px(
m∑
i=1

〈yi ,wi 〉), z〉 ≤ ‖(l −
m∑
i=1

〈yi ,wi 〉)〈x , x〉1/2‖.

Huaxin Lin Department of Mathematics East China Normal University University of OregonIntroduction to Hilbert C∗-modules, II 8 / 1



Theorem 2.5 Let E be a full Hilbert A-module such that L(E ) = B(E ).
Then E is orthogonal complementary.

Proof: Suppose that H is a Hilbert A-module and E ⊂ H. Let P be the
bounded module map from H into E ] defined by
Px(y) = 〈x , y〉 for all x ∈ H and y ∈ E . Fix x ∈ H and y ∈ E , define

T (z) = y(Px(z)) = y〈x , z〉 for all z ∈ E .

Working in B(E∼),

if necessary, we see that

T ∗(z) = Px〈y , z〉 for all z ∈ E .

Since T ∈ B(E ) = L(E ), T ∗ ∈ L(E ). Therefore Px(
∑m

i=1〈yi ,wi 〉) ∈ E
for all yi ,wi ∈ E , 1 ≤ i ≤ m (for any m ∈ N). Let x = u〈x , x〉1/2 be the
polar decomposition of x in H∼. With ‖z‖ ≤ 1, we have

‖〈Px , z〉 − 〈Px(
m∑
i=1

〈yi ,wi 〉), z〉 ≤ ‖(l −
m∑
i=1

〈yi ,wi 〉)〈x , x〉1/2‖.

Huaxin Lin Department of Mathematics East China Normal University University of OregonIntroduction to Hilbert C∗-modules, II 8 / 1



Theorem 2.5 Let E be a full Hilbert A-module such that L(E ) = B(E ).
Then E is orthogonal complementary.

Proof: Suppose that H is a Hilbert A-module and E ⊂ H. Let P be the
bounded module map from H into E ] defined by
Px(y) = 〈x , y〉 for all x ∈ H and y ∈ E . Fix x ∈ H and y ∈ E , define

T (z) = y(Px(z)) = y〈x , z〉 for all z ∈ E .

Working in B(E∼), if necessary, we see that

T ∗(z) = Px〈y , z〉 for all z ∈ E .

Since T ∈ B(E ) = L(E ), T ∗ ∈ L(E ). Therefore Px(
∑m

i=1〈yi ,wi 〉) ∈ E
for all yi ,wi ∈ E , 1 ≤ i ≤ m (for any m ∈ N). Let x = u〈x , x〉1/2 be the
polar decomposition of x in H∼. With ‖z‖ ≤ 1, we have

‖〈Px , z〉 − 〈Px(
m∑
i=1

〈yi ,wi 〉), z〉 ≤ ‖(l −
m∑
i=1

〈yi ,wi 〉)〈x , x〉1/2‖.

Huaxin Lin Department of Mathematics East China Normal University University of OregonIntroduction to Hilbert C∗-modules, II 8 / 1



Theorem 2.5 Let E be a full Hilbert A-module such that L(E ) = B(E ).
Then E is orthogonal complementary.

Proof: Suppose that H is a Hilbert A-module and E ⊂ H. Let P be the
bounded module map from H into E ] defined by
Px(y) = 〈x , y〉 for all x ∈ H and y ∈ E . Fix x ∈ H and y ∈ E , define

T (z) = y(Px(z)) = y〈x , z〉 for all z ∈ E .

Working in B(E∼), if necessary, we see that

T ∗(z) = Px〈y , z〉 for all z ∈ E .

Since T ∈ B(E ) = L(E ), T ∗ ∈ L(E ).

Therefore Px(
∑m

i=1〈yi ,wi 〉) ∈ E
for all yi ,wi ∈ E , 1 ≤ i ≤ m (for any m ∈ N). Let x = u〈x , x〉1/2 be the
polar decomposition of x in H∼. With ‖z‖ ≤ 1, we have

‖〈Px , z〉 − 〈Px(
m∑
i=1

〈yi ,wi 〉), z〉 ≤ ‖(l −
m∑
i=1

〈yi ,wi 〉)〈x , x〉1/2‖.

Huaxin Lin Department of Mathematics East China Normal University University of OregonIntroduction to Hilbert C∗-modules, II 8 / 1



Theorem 2.5 Let E be a full Hilbert A-module such that L(E ) = B(E ).
Then E is orthogonal complementary.

Proof: Suppose that H is a Hilbert A-module and E ⊂ H. Let P be the
bounded module map from H into E ] defined by
Px(y) = 〈x , y〉 for all x ∈ H and y ∈ E . Fix x ∈ H and y ∈ E , define

T (z) = y(Px(z)) = y〈x , z〉 for all z ∈ E .

Working in B(E∼), if necessary, we see that

T ∗(z) = Px〈y , z〉 for all z ∈ E .

Since T ∈ B(E ) = L(E ), T ∗ ∈ L(E ). Therefore Px(
∑m

i=1〈yi ,wi 〉) ∈ E
for all yi ,wi ∈ E , 1 ≤ i ≤ m (for any m ∈ N).

Let x = u〈x , x〉1/2 be the
polar decomposition of x in H∼. With ‖z‖ ≤ 1, we have

‖〈Px , z〉 − 〈Px(
m∑
i=1

〈yi ,wi 〉), z〉 ≤ ‖(l −
m∑
i=1

〈yi ,wi 〉)〈x , x〉1/2‖.

Huaxin Lin Department of Mathematics East China Normal University University of OregonIntroduction to Hilbert C∗-modules, II 8 / 1



Theorem 2.5 Let E be a full Hilbert A-module such that L(E ) = B(E ).
Then E is orthogonal complementary.

Proof: Suppose that H is a Hilbert A-module and E ⊂ H. Let P be the
bounded module map from H into E ] defined by
Px(y) = 〈x , y〉 for all x ∈ H and y ∈ E . Fix x ∈ H and y ∈ E , define

T (z) = y(Px(z)) = y〈x , z〉 for all z ∈ E .

Working in B(E∼), if necessary, we see that

T ∗(z) = Px〈y , z〉 for all z ∈ E .

Since T ∈ B(E ) = L(E ), T ∗ ∈ L(E ). Therefore Px(
∑m

i=1〈yi ,wi 〉) ∈ E
for all yi ,wi ∈ E , 1 ≤ i ≤ m (for any m ∈ N). Let x = u〈x , x〉1/2 be the
polar decomposition of x in H∼.

With ‖z‖ ≤ 1, we have

‖〈Px , z〉 − 〈Px(
m∑
i=1

〈yi ,wi 〉), z〉 ≤ ‖(l −
m∑
i=1

〈yi ,wi 〉)〈x , x〉1/2‖.

Huaxin Lin Department of Mathematics East China Normal University University of OregonIntroduction to Hilbert C∗-modules, II 8 / 1



Theorem 2.5 Let E be a full Hilbert A-module such that L(E ) = B(E ).
Then E is orthogonal complementary.

Proof: Suppose that H is a Hilbert A-module and E ⊂ H. Let P be the
bounded module map from H into E ] defined by
Px(y) = 〈x , y〉 for all x ∈ H and y ∈ E . Fix x ∈ H and y ∈ E , define

T (z) = y(Px(z)) = y〈x , z〉 for all z ∈ E .

Working in B(E∼), if necessary, we see that

T ∗(z) = Px〈y , z〉 for all z ∈ E .

Since T ∈ B(E ) = L(E ), T ∗ ∈ L(E ). Therefore Px(
∑m

i=1〈yi ,wi 〉) ∈ E
for all yi ,wi ∈ E , 1 ≤ i ≤ m (for any m ∈ N). Let x = u〈x , x〉1/2 be the
polar decomposition of x in H∼. With ‖z‖ ≤ 1, we have

‖〈Px , z〉 − 〈Px(
m∑
i=1

〈yi ,wi 〉), z〉 ≤ ‖(l −
m∑
i=1

〈yi ,wi 〉)〈x , x〉1/2‖.

Huaxin Lin Department of Mathematics East China Normal University University of OregonIntroduction to Hilbert C∗-modules, II 8 / 1



Theorem 2.5 Let E be a full Hilbert A-module such that L(E ) = B(E ).
Then E is orthogonal complementary.

Proof: Suppose that H is a Hilbert A-module and E ⊂ H. Let P be the
bounded module map from H into E ] defined by
Px(y) = 〈x , y〉 for all x ∈ H and y ∈ E . Fix x ∈ H and y ∈ E , define

T (z) = y(Px(z)) = y〈x , z〉 for all z ∈ E .

Working in B(E∼), if necessary, we see that

T ∗(z) = Px〈y , z〉 for all z ∈ E .

Since T ∈ B(E ) = L(E ), T ∗ ∈ L(E ). Therefore Px(
∑m

i=1〈yi ,wi 〉) ∈ E
for all yi ,wi ∈ E , 1 ≤ i ≤ m (for any m ∈ N). Let x = u〈x , x〉1/2 be the
polar decomposition of x in H∼. With ‖z‖ ≤ 1, we have

‖〈Px , z〉 − 〈Px(
m∑
i=1

〈yi ,wi 〉), z〉 ≤ ‖(l −
m∑
i=1

〈yi ,wi 〉)〈x , x〉1/2‖.

Huaxin Lin Department of Mathematics East China Normal University University of OregonIntroduction to Hilbert C∗-modules, II 8 / 1



Proof:
Suppose that H is a Hilbert A-module and E ⊂ H. Let P be the bounded
module map from H into E ] defined by Px(y) = 〈x , y〉 for all x ∈ H and
y ∈ E . Fix x ∈ H and y ∈ E , define

T (z) = y(Px(z)) = y〈x , z〉 for all z ∈ E .
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T ∗(z) = Px〈y , z〉 for all z ∈ E .

Since T ∈ B(E ) = L(E ), T ∗ ∈ L(E ). Therefore Px(
∑m

i=1〈yi ,wi 〉) ∈ E for
all yi ,wi ∈ E , 1 ≤ i ≤ m (for any m ∈ N). Let x = u〈x , x〉1/2 be the polar
decomposition of x in H∼. With ‖z‖ ≤ 1, we have

‖〈Px , z〉 − 〈Px(
m∑
i=1

〈yi ,wi 〉), z〉 ≤ ‖(l −
m∑
i=1

〈yi ,wi 〉)〈x , x〉1/2‖.

Since E is full and Px(
∑m

i=1〈yi ,wi 〉 ∈ E for all yi ,wi ∈ E , we conclude
from the above inequalities that Px ∈ E for all x ∈ H. Therefore
P ∈ B(H) and H = (I − P)H ⊕ E . This completes the proof.
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Corollary 2.6 Let A be a C ∗-algebra such that LM(A) = M(A)

Then
orthogonal direct summands of An are orthogonally complementary, where
n is a positive integer.

Definition2.7 Let H1 and H2 be Hilbert modules over a C ∗-algebra A and
H1 ⊂ H2. Let H be also a Hilbert A-module. Suppose that there is a
bounded module map T : H1 → H. Does there exists a module map
T̃ : H2 → H such that T̃ |H1 = T and ‖T̃‖ = ‖T‖?.
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In other words, we are search a map T̃ with ‖T̃‖ = ‖T‖ such that the
following commutative diagram commutes:

H2

↑ ↘T̃

H1 −→T H

Let C1 be category whose objects are Hilbert A-modules and morphisms
are contractive module maps with adjoints. We would like to identify
those injective objects.
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Lemma 2.8 Let H be a Hilbert module over a C ∗-algebra A

and H0 a
closed submodule of H. Suppose that T ∈ K (H0), then there is
T̃ ∈ K (H) such that ‖T̃‖ = ‖T‖ and T |H0 = T . Consequently, K (H0)
may be regarded as a hereditary C*-subalgebra of K (H).

Theorem 2.9 Let A be a C ∗-algebra and H be a Hilbert A-module. Then
H is injective in the category C1 if and only if H is orthogonal
complementary.
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Proof:

We first assume that H is orthogonally complementary.

Let H0 be a
closed submodule of a Hilbert A-module H1 and T a bounded module map
in L(H0,H). Set H2 = H0 ⊕ H and define Tλ(h0 ⊕ h) = 0⊕ T (h0) + λh
for a;; h0 ∈ H0, h ∈ H, where 0 < λ < 1. Clearly Tλ ∈ L(H2) and

‖Tλ‖ ≤ (‖T‖2 + λ2)1/2.

Moreover, Tλ is surjective. It follows from Theorem 2.2 that

H2 = kerT ⊕ |Tλ|(H2).

Furthermore, Tλ is one-to-one on |Tλ|(H2) and maps |Tλ|(H2) onto
0⊕ H. By Cor. 2.3, |Tλ|(H2) ∼= H. So |Tλ(H2) is orthogonally
complementary. Set H3 = H1 ⊕ H then

H3 ⊃ H2 ⊃ |Tλ|(H2).
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Therefore, we may write

H3 = H4 ⊕ |Tλ|(H2).

for some closed submodule H4. We define T̃λ in L(H3) by

T̃λ(h4 ⊕ h) = Tλ(h) for all h4 ∈ H4 and h ∈ |Tλ|(H2).

Clearly T̃λ|H = Tλ and ‖T̃‖ = ‖T‖. By a Kasparov’s Theorem, we have
Tλ ∈ M(K (H3)). It follows from 2.8 that K (H2) is a hereditary
C∗-subalgebra of K (H3). Let p be the open projection in K (H3)∗∗

corresponding to K (H2). If
h ∈ H⊥2 = {h ∈ H3 : 〈h, x〉 = 0 for all x ∈ H2}, then T̃λ(h) = 0.
Therefore T̃λ(1− p̄) = 0. For any k ∈ K (H3),

kT̃λ(1− p̄) = 0,

since T̃λ ∈M (K (H3)) and kT̃λ ∈ K (H3).
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Let p be the open projection in K (H3)∗∗ corresponding to K (H2). If
h ∈ H⊥2 = {h ∈ H3 : 〈h, x〉 = 0 for all x ∈ H2}, then T̃λ(h) = 0.
Therefore T̃λ(1− p̄) = 0.

For any k ∈ K (H3),

kT̃λ(1− p̄) = 0,

since T̃λ ∈M (K (H3)) and kT̃λ ∈ K (H3). Put q = (1− p̄). Note that q
is an open projection. Let e be the range projection of T ∗λk

2Tλ. Then
eq = 0. Since p is open, it follows follows that e ≤ 1− q̄. Hence
e ≤ e − eq̄e, or eq̄e = 0. Hence eq̄ = 0. It follows that e(1− p) = 0.
Thus kT̃λ(1− p) = 0 for all k ∈ K (H2). It follows that T̃λ(1− p) = 0.

Huaxin Lin Department of Mathematics East China Normal University University of OregonIntroduction to Hilbert C∗-modules, II 14 / 1



Let p be the open projection in K (H3)∗∗ corresponding to K (H2). If
h ∈ H⊥2 = {h ∈ H3 : 〈h, x〉 = 0 for all x ∈ H2}, then T̃λ(h) = 0.
Therefore T̃λ(1− p̄) = 0. For any k ∈ K (H3),

kT̃λ(1− p̄) = 0,

since T̃λ ∈M (K (H3)) and kT̃λ ∈ K (H3).

Put q = (1− p̄). Note that q
is an open projection. Let e be the range projection of T ∗λk

2Tλ. Then
eq = 0. Since p is open, it follows follows that e ≤ 1− q̄. Hence
e ≤ e − eq̄e, or eq̄e = 0. Hence eq̄ = 0. It follows that e(1− p) = 0.
Thus kT̃λ(1− p) = 0 for all k ∈ K (H2). It follows that T̃λ(1− p) = 0.

Huaxin Lin Department of Mathematics East China Normal University University of OregonIntroduction to Hilbert C∗-modules, II 14 / 1



Let p be the open projection in K (H3)∗∗ corresponding to K (H2). If
h ∈ H⊥2 = {h ∈ H3 : 〈h, x〉 = 0 for all x ∈ H2}, then T̃λ(h) = 0.
Therefore T̃λ(1− p̄) = 0. For any k ∈ K (H3),

kT̃λ(1− p̄) = 0,

since T̃λ ∈M (K (H3)) and kT̃λ ∈ K (H3).

Put q = (1− p̄). Note that q
is an open projection. Let e be the range projection of T ∗λk

2Tλ. Then
eq = 0. Since p is open, it follows follows that e ≤ 1− q̄. Hence
e ≤ e − eq̄e, or eq̄e = 0. Hence eq̄ = 0. It follows that e(1− p) = 0.
Thus kT̃λ(1− p) = 0 for all k ∈ K (H2). It follows that T̃λ(1− p) = 0.

Huaxin Lin Department of Mathematics East China Normal University University of OregonIntroduction to Hilbert C∗-modules, II 14 / 1



Let p be the open projection in K (H3)∗∗ corresponding to K (H2). If
h ∈ H⊥2 = {h ∈ H3 : 〈h, x〉 = 0 for all x ∈ H2}, then T̃λ(h) = 0.
Therefore T̃λ(1− p̄) = 0. For any k ∈ K (H3),

kT̃λ(1− p̄) = 0,

since T̃λ ∈M (K (H3)) and kT̃λ ∈ K (H3). Put q = (1− p̄).

Note that q
is an open projection. Let e be the range projection of T ∗λk

2Tλ. Then
eq = 0. Since p is open, it follows follows that e ≤ 1− q̄. Hence
e ≤ e − eq̄e, or eq̄e = 0. Hence eq̄ = 0. It follows that e(1− p) = 0.
Thus kT̃λ(1− p) = 0 for all k ∈ K (H2). It follows that T̃λ(1− p) = 0.

Huaxin Lin Department of Mathematics East China Normal University University of OregonIntroduction to Hilbert C∗-modules, II 14 / 1



Let p be the open projection in K (H3)∗∗ corresponding to K (H2). If
h ∈ H⊥2 = {h ∈ H3 : 〈h, x〉 = 0 for all x ∈ H2}, then T̃λ(h) = 0.
Therefore T̃λ(1− p̄) = 0. For any k ∈ K (H3),

kT̃λ(1− p̄) = 0,

since T̃λ ∈M (K (H3)) and kT̃λ ∈ K (H3). Put q = (1− p̄). Note that q
is an open projection.

Let e be the range projection of T ∗λk
2Tλ. Then

eq = 0. Since p is open, it follows follows that e ≤ 1− q̄. Hence
e ≤ e − eq̄e, or eq̄e = 0. Hence eq̄ = 0. It follows that e(1− p) = 0.
Thus kT̃λ(1− p) = 0 for all k ∈ K (H2). It follows that T̃λ(1− p) = 0.

Huaxin Lin Department of Mathematics East China Normal University University of OregonIntroduction to Hilbert C∗-modules, II 14 / 1



Let p be the open projection in K (H3)∗∗ corresponding to K (H2). If
h ∈ H⊥2 = {h ∈ H3 : 〈h, x〉 = 0 for all x ∈ H2}, then T̃λ(h) = 0.
Therefore T̃λ(1− p̄) = 0. For any k ∈ K (H3),

kT̃λ(1− p̄) = 0,

since T̃λ ∈M (K (H3)) and kT̃λ ∈ K (H3). Put q = (1− p̄). Note that q
is an open projection. Let e be the range projection of T ∗λk

2Tλ.

Then
eq = 0. Since p is open, it follows follows that e ≤ 1− q̄. Hence
e ≤ e − eq̄e, or eq̄e = 0. Hence eq̄ = 0. It follows that e(1− p) = 0.
Thus kT̃λ(1− p) = 0 for all k ∈ K (H2). It follows that T̃λ(1− p) = 0.

Huaxin Lin Department of Mathematics East China Normal University University of OregonIntroduction to Hilbert C∗-modules, II 14 / 1



Let p be the open projection in K (H3)∗∗ corresponding to K (H2). If
h ∈ H⊥2 = {h ∈ H3 : 〈h, x〉 = 0 for all x ∈ H2}, then T̃λ(h) = 0.
Therefore T̃λ(1− p̄) = 0. For any k ∈ K (H3),

kT̃λ(1− p̄) = 0,

since T̃λ ∈M (K (H3)) and kT̃λ ∈ K (H3). Put q = (1− p̄). Note that q
is an open projection. Let e be the range projection of T ∗λk

2Tλ. Then
eq = 0.

Since p is open, it follows follows that e ≤ 1− q̄. Hence
e ≤ e − eq̄e, or eq̄e = 0. Hence eq̄ = 0. It follows that e(1− p) = 0.
Thus kT̃λ(1− p) = 0 for all k ∈ K (H2). It follows that T̃λ(1− p) = 0.

Huaxin Lin Department of Mathematics East China Normal University University of OregonIntroduction to Hilbert C∗-modules, II 14 / 1



Let p be the open projection in K (H3)∗∗ corresponding to K (H2). If
h ∈ H⊥2 = {h ∈ H3 : 〈h, x〉 = 0 for all x ∈ H2}, then T̃λ(h) = 0.
Therefore T̃λ(1− p̄) = 0. For any k ∈ K (H3),

kT̃λ(1− p̄) = 0,

since T̃λ ∈M (K (H3)) and kT̃λ ∈ K (H3). Put q = (1− p̄). Note that q
is an open projection. Let e be the range projection of T ∗λk

2Tλ. Then
eq = 0. Since p is open, it follows follows that e ≤ 1− q̄.

Hence
e ≤ e − eq̄e, or eq̄e = 0. Hence eq̄ = 0. It follows that e(1− p) = 0.
Thus kT̃λ(1− p) = 0 for all k ∈ K (H2). It follows that T̃λ(1− p) = 0.

Huaxin Lin Department of Mathematics East China Normal University University of OregonIntroduction to Hilbert C∗-modules, II 14 / 1



Let p be the open projection in K (H3)∗∗ corresponding to K (H2). If
h ∈ H⊥2 = {h ∈ H3 : 〈h, x〉 = 0 for all x ∈ H2}, then T̃λ(h) = 0.
Therefore T̃λ(1− p̄) = 0. For any k ∈ K (H3),

kT̃λ(1− p̄) = 0,

since T̃λ ∈M (K (H3)) and kT̃λ ∈ K (H3). Put q = (1− p̄). Note that q
is an open projection. Let e be the range projection of T ∗λk

2Tλ. Then
eq = 0. Since p is open, it follows follows that e ≤ 1− q̄. Hence
e ≤ e − eq̄e,

or eq̄e = 0. Hence eq̄ = 0. It follows that e(1− p) = 0.
Thus kT̃λ(1− p) = 0 for all k ∈ K (H2). It follows that T̃λ(1− p) = 0.

Huaxin Lin Department of Mathematics East China Normal University University of OregonIntroduction to Hilbert C∗-modules, II 14 / 1



Let p be the open projection in K (H3)∗∗ corresponding to K (H2). If
h ∈ H⊥2 = {h ∈ H3 : 〈h, x〉 = 0 for all x ∈ H2}, then T̃λ(h) = 0.
Therefore T̃λ(1− p̄) = 0. For any k ∈ K (H3),

kT̃λ(1− p̄) = 0,

since T̃λ ∈M (K (H3)) and kT̃λ ∈ K (H3). Put q = (1− p̄). Note that q
is an open projection. Let e be the range projection of T ∗λk

2Tλ. Then
eq = 0. Since p is open, it follows follows that e ≤ 1− q̄. Hence
e ≤ e − eq̄e, or eq̄e = 0.

Hence eq̄ = 0. It follows that e(1− p) = 0.
Thus kT̃λ(1− p) = 0 for all k ∈ K (H2). It follows that T̃λ(1− p) = 0.

Huaxin Lin Department of Mathematics East China Normal University University of OregonIntroduction to Hilbert C∗-modules, II 14 / 1



Let p be the open projection in K (H3)∗∗ corresponding to K (H2). If
h ∈ H⊥2 = {h ∈ H3 : 〈h, x〉 = 0 for all x ∈ H2}, then T̃λ(h) = 0.
Therefore T̃λ(1− p̄) = 0. For any k ∈ K (H3),

kT̃λ(1− p̄) = 0,

since T̃λ ∈M (K (H3)) and kT̃λ ∈ K (H3). Put q = (1− p̄). Note that q
is an open projection. Let e be the range projection of T ∗λk

2Tλ. Then
eq = 0. Since p is open, it follows follows that e ≤ 1− q̄. Hence
e ≤ e − eq̄e, or eq̄e = 0. Hence eq̄ = 0.

It follows that e(1− p) = 0.
Thus kT̃λ(1− p) = 0 for all k ∈ K (H2). It follows that T̃λ(1− p) = 0.

Huaxin Lin Department of Mathematics East China Normal University University of OregonIntroduction to Hilbert C∗-modules, II 14 / 1



Let p be the open projection in K (H3)∗∗ corresponding to K (H2). If
h ∈ H⊥2 = {h ∈ H3 : 〈h, x〉 = 0 for all x ∈ H2}, then T̃λ(h) = 0.
Therefore T̃λ(1− p̄) = 0. For any k ∈ K (H3),

kT̃λ(1− p̄) = 0,

since T̃λ ∈M (K (H3)) and kT̃λ ∈ K (H3). Put q = (1− p̄). Note that q
is an open projection. Let e be the range projection of T ∗λk

2Tλ. Then
eq = 0. Since p is open, it follows follows that e ≤ 1− q̄. Hence
e ≤ e − eq̄e, or eq̄e = 0. Hence eq̄ = 0. It follows that e(1− p) = 0.

Thus kT̃λ(1− p) = 0 for all k ∈ K (H2). It follows that T̃λ(1− p) = 0.

Huaxin Lin Department of Mathematics East China Normal University University of OregonIntroduction to Hilbert C∗-modules, II 14 / 1



Let p be the open projection in K (H3)∗∗ corresponding to K (H2). If
h ∈ H⊥2 = {h ∈ H3 : 〈h, x〉 = 0 for all x ∈ H2}, then T̃λ(h) = 0.
Therefore T̃λ(1− p̄) = 0. For any k ∈ K (H3),

kT̃λ(1− p̄) = 0,

since T̃λ ∈M (K (H3)) and kT̃λ ∈ K (H3). Put q = (1− p̄). Note that q
is an open projection. Let e be the range projection of T ∗λk

2Tλ. Then
eq = 0. Since p is open, it follows follows that e ≤ 1− q̄. Hence
e ≤ e − eq̄e, or eq̄e = 0. Hence eq̄ = 0. It follows that e(1− p) = 0.
Thus kT̃λ(1− p) = 0 for all k ∈ K (H2).

It follows that T̃λ(1− p) = 0.

Huaxin Lin Department of Mathematics East China Normal University University of OregonIntroduction to Hilbert C∗-modules, II 14 / 1



Let p be the open projection in K (H3)∗∗ corresponding to K (H2). If
h ∈ H⊥2 = {h ∈ H3 : 〈h, x〉 = 0 for all x ∈ H2}, then T̃λ(h) = 0.
Therefore T̃λ(1− p̄) = 0. For any k ∈ K (H3),

kT̃λ(1− p̄) = 0,

since T̃λ ∈M (K (H3)) and kT̃λ ∈ K (H3). Put q = (1− p̄). Note that q
is an open projection. Let e be the range projection of T ∗λk

2Tλ. Then
eq = 0. Since p is open, it follows follows that e ≤ 1− q̄. Hence
e ≤ e − eq̄e, or eq̄e = 0. Hence eq̄ = 0. It follows that e(1− p) = 0.
Thus kT̃λ(1− p) = 0 for all k ∈ K (H2). It follows that T̃λ(1− p) = 0.

Huaxin Lin Department of Mathematics East China Normal University University of OregonIntroduction to Hilbert C∗-modules, II 14 / 1



For any k1 ∈ K (H2), h ∈ H2, k1(h) ∈ H2, and

‖(T̃λ − T̃λ′)k1(h)‖ ≤ |λ− λ′|‖k1(h)‖.

Therefore
‖T̃λ − T̃λ′‖ ≤ |λ− λ′|‖k1‖

for any k3 ∈ K (H2). Thus

‖(T̃λ − T̃λ′)p‖ < |λ− λ′|.

Since T̃λ(1− p) = 0, we obtain that

‖T̃λ − T̃λ′‖ ≤ |λ− λ′|.

Set T̃ = limλ→0 T̃λ. So T̃ ∈ L(H3) and ‖T̃‖ = limλ ‖T̃λ‖ = ‖T‖.
Since T̃λ|H0 = T (if we identify H with 0⊕ H). We conclude T̃H0 = T
and ‖T̃ |H1‖ = ‖T‖. This shows that H is injective in the category C1.
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For the converse,

we assume that H is injective in the category C1.
Suppose that E is a Hilbert A-module containing H as a closed submodule.
Let ι : H → H be the identity map. Since H is injective in C1 there is
ι̃ ∈ L(E ,H) such that ι̃|H = ι and ‖ι̃‖ = ‖ι‖. It is then easily checked
that (ι̃∗)(ι̃) is a projection in L(E ) and (ι̃∗)(ι̃)|H = ι. This implies that H
is an orthogonal direct summand of E . This completes the proof.
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Theorem 2.10 Let A be a σ-unital C ∗-algebra.

Then the following are
equivalent:
(1) LM(A) = M(A);
(2) A is orthogonally complementary as a Hubert A-module;
(3) A is injective as a Hilbert A-module in the category C ;
(4) For any closed right ideal R of A and T ∈ L(R,A), there is
T̃ ∈ M(A) such that T̃ |R = T and ‖T̃‖ = ‖T‖.

It should be noted that for the implications (1) ⇒ (2) (2) ⇔ (3) ⇒ (4)
we do not need to assume that A is σ-unital.
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(a) Every unital C ∗-algebra satisfies the conditions.

(b) Every commutative C ∗-algebra satisfies the conditions (l)-(4).
(c) Let B be a C ∗-algebra such that LM(B) = M(B) and c0 be the
C ∗-algebra of sequences of complex numbers which converge to zero.
Then c0 ⊗ B satisfies the conditions (l)-(4).
(d) Let B be a unital C ∗-algebra and X a locally compact Hausdorff
space. Then C0(X )⊗ B satisfies the conditions (l)-(4).
(e) We will see that if LM(B) = M(B), then A = Mn(B), the C ∗-algebra
of n × n matrices over B, satisfies the conditions (l)-(4).
(f) The only stable C ∗-algebra satisfying the conditions (l)-(4) are those
dual C*-algebras.
(g) The only σ-unital simple C*-algebra satisfying the conditions (l)-(4)
are those elementary ones (and unital ones).
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Theorem 2.11 Let H be a countably generated Hilbert A-module.

If H is
orthogonally complementary or equivalently, H is injective in the category
C1, then L(H) = B(H).

Let us consider the following question. Suppose that H0 ⊂ H are Hilbert
A-modules. How large could the orthogonal complement of H0 (in H)
be?

Let A be a C ∗-algebra. A densely defined 2-quasitrace is a 2-quasitrace
defined on Ped(A⊗K). Denote by Q̃T (A) the set of densely defined
2-quasitraces on A⊗K.
We identify A with A⊗ e1,1 a corner of A⊗K.
Define, for each δ > 0, a function fδ ∈ C ([0,∞)) by 0 ≤ fδ(t) ≤ 1,
fδ(t) = 0 if t ∈ [0, δ/2] and fδ(t) = 1 if t ∈ [δ,∞) and fδ(t) is linear in
(δ/2, δ). Note that, for any a ∈ (A⊗K)+, fδ(a) ∈ Ped(A⊗K).
For a ∈ (A⊗K)+, define

dτ (a) = lim
δ→0

τ(fδ(a)) for all τ ∈ Q̃T (A). (e 0.1)
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We say A has strict comparison,

if for any pair a, b ∈ A⊗K,
dτ (a) < dτ (b) for all τ ∈ Q̃T (A) implies that a . b (in the sense of
Cuntz, i.e., there exists a sequence {xn} ⊂ A⊗K such that
limn→∞ ‖a− x∗nbxn‖ = 0.
Let A be a σ-unital simple C ∗-algebra. If e ∈ Ped(A⊗K)+. Then
B = a(A⊗K)a is algebraically simple and Ped(B) = B. Moreover
B ⊗K ∼= A⊗K.
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If A is a σ-unital algebraically simple C ∗-algebra, denote by QT (A) the set
of all 2-quasitraces τ on A with ‖τ‖ = 1.

Then 0 6∈ QT (A)
w
.

Define, for any a ∈ (A⊗K)+ with 0 ≤ a ≤ 1,

ω(a) = lim
n→∞

sup{dτ (a)− τ(f1/n(a)) : τ ∈ QT (A)
w}.

The function dτ (a) (τ ∈ QT (A)
w

) is continuous if and only if ω(a) = 0.

Let H be a countably generated Hilbert A-module. Then, by a Kasparov’
theorem, we may view H is a Hilbert A-submodule of HA. Note
K (HA) ∼= A⊗K. So K (H) is viewed as a hereditary C ∗-subalgebra of
A⊗K. Let a ∈ K (H) be a strictly positive element. Define
dτ (H) = dτ (a) for τ ∈ QT (A)

w
. It is well defined. Then define

ω(H) = ω(a).
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Theorem 2.12 Let A be a σ-unital algebraically simple C ∗-algebra with
strict comparison.

Suppose that H0 ⊂ H are countably generated Hilbert
A-modules. Then there is a Hilbert A-module H00 ⊂ H0 such that

dτ (H00 ⊕ H⊥00) > dτ (H)− ω(H0)− ε and (e 0.2)

dτ (H00) > dτ (H0)− ω(H0)− ε. (e 0.3)

for all τ ∈ QT (A)
w
, where H⊥00 = {x ∈ H : 〈x , h〉 = 0 for all h ∈ H00}.
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Corollary 2.13 Let A be a σ-unital algebraically simple C ∗-algebra with
strict comparison.

Suppose that H0 ⊂ H are countably generated Hilbert
A-modules. Suppose that ω(H0) = 0. Then there is a Hilbert A-module
H00 ⊂ H0 such that

dτ (H00 ⊕ H⊥00) > dτ (H)− ε and (e 0.4)

dτ (H00) > dτ (H0)− ε. (e 0.5)

for all τ ∈ QT (A)
w
.
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